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Abstract. Load balancing is an important requirement for the efficient
execution of numerical simulations on parallel computers. In particular
when the simulation domain changes over time, the mapping of compu-
tational tasks to processors needs to be modified accordingly. Most state-
of-the-art libraries addressing this problem are based on graph reparti-
tioning with a parallel variant of the Kernighan-Lin (KL) heuristic. The
KL approach has a number of drawbacks, including the optimized metric
and solutions with undesirable properties.

Here we further explore the promising diffusion-based multilevel graph
partitioning algorithm DibaP. We describe the evolution of the algo-
rithm and report on its MPI implementation PDibaP for parallelism
with distributed memory. PDibaP is targeted at small to medium scale
parallelism with dozens of processors. The presented experiments use
graph sequences that imitate adaptive numerical simulations. They de-
monstrate the applicability and quality of PDibaP for load balancing
by repartitioning on this scale. Compared to the faster ParMETIS,
PDibaP’s solutions often have partitions with fewer external edges and
a smaller communication volume in an underlying numerical simulation.

Keywords: Dynamic load balancing, graph partitioning and repartition-
ing, parallel adaptive numerical simulations, disturbed diffusion.

1 Introduction

Numerical simulations are very important tools in science and engineering for the
analysis of physical processes modeled by partial differential equations (PDEs).
To make the PDEs solvable on a computer, they are discretized within the sim-
ulation domain, e. g., by the finite element method (FEM). Such a discretization
yields a mesh, which can be regarded as a graph with geometric (and possibly
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other) information. Application areas of such simulations are fluid dynamics,
structural mechanics, nuclear physics, and many others [10].

The solutions of discretized PDEs are usually computed by iterative numeri-
cal solvers, which have become classical applications for parallel computers. For
efficiency reasons the computational tasks, represented by the mesh elements,
must be distributed onto the processors evenly. Moreover, neighboring elements
of the mesh need to exchange their values in every iteration to update their
own value. Due to the high cost of inter-processor communication, neighboring
mesh elements should reside on the same processor. A good initial assignment of
subdomains to processors can be found by solving the graph partitioning prob-
lem (GPP) [29]. The most common GPP formulation for an undirected graph
G = (V,E) asks for a division of V into k pairwise disjoint subsets (parts)

such that all parts are no larger than (1 + ε) · d |V |
k e (for small ε ≥ 0) and the

edge-cut, i. e., the total number of edges having their incident nodes in different
subdomains, is minimized.

In many numerical simulations some areas of the mesh are of higher inter-
est than others. For instance, during the simulation of the interaction of a gas
bubble with a surrounding liquid, one is interested in the conditions close to the
boundary of the fluids. Another application among many others is the simula-
tion of the dynamic behavior of biomolecular systems [2]. To obtain an accurate
solution, a high resolution of the mesh is required in the areas of interest. To
use the available memory efficiently, one has to work with different resolutions
in different areas. Moreover, the areas of interest may change during the simula-
tion, which requires adaptations in the mesh and may result in undesirable load
imbalances. Hence, after the mesh has been adapted, its elements need to be
redistributed such that every processor has a similar computational effort again.
While this can be done by solving the GPP for the new mesh, the repartitioning
process not only needs to find new partitions of high quality. Also as few nodes
as possible should be moved to other processors since this migration causes high
communication costs and changes in the local mesh data structure.

Motivation. The most popular graph partitioning and repartitioning libraries
(for details see Section 2) use local node-exchanging heuristics like Kernighan-
Lin (KL) [17] within a multilevel improvement process to compute solutions
with low edge cuts very quickly. Yet, their deployment can have certain draw-
backs. First of all, minimizing the edge-cut with these tools does not necessarily
mean to minimize the total running time of parallel numerical simulations [35,
12]. While the total communication volume can be minimized by hypergraph
partitioning [4], synchronous parallel applications need to wait for the processor
computing longest. Hence, the maximum norm (i. e., the worst part in a parti-
tion) of the simulation’s communication costs is of higher importance. Moreover,
for some applications, the shape of the subdomains plays a significant role. It can
be assessed by various measures such as aspect ratio [8], maximum diameter [25],
connectedness, or smooth boundaries. Optimizing partition shapes, however, re-
quires additional techniques (e. g., [8, 25, 22]), which are far from being mature.
Finally, due to their sequential nature, the most popular repartitioning heuris-
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tics are difficult to parallelize—although significant progress has been made (see
Section 2).

Our previously developed partitioning algorithm DibaP aims at computing
well-shaped partitions and uses disturbed diffusive schemes to decide not only
how many nodes move to other parts, but also which ones. It is inherently
parallel and overcomes many of the above mentioned difficulties, as could be
shown experimentally for static graph partitioning [22]. While it is much slower
than state-of-the-art partitioners, it often obtains better results.

Contribution. In this work we further explore the disturbed diffusive approach
and focus on repartitioning for load balancing. First we present how the imple-
mentation of PDibaP has been improved and adapted for MPI parallel repar-
titioning. With this implementation we perform various repartitioning experi-
ments with benchmark graph sequences. These experiments are the first using
PDibaP for repartitioning and show the suitability of the disturbed diffusive
approach. The average quality of the partitions computed by PDibaP is clearly
better than that of the state-of-the-art repartitioners ParMETIS and parallel
Jostle, while PDibaP’s migration volume is usually comparable. It is impor-
tant to note that PDibaP’s improvement concerning the partition quality for
the graph sequences is even higher than in the case of static partitioning.

2 Related Work

We give a short introduction to the state-of-the-art of practical graph reparti-
tioning algorithms and libraries which only require the adjacency information
about the graph and no additional problem-related information. For a broader
overview the reader is referred to Schloegel et al. [29]. Some recent advances in
related topics can also be found in Boman et al. [3].

2.1 Graph Partitioning

To employ local improvement heuristics effectively, they need to start with a
reasonably good initial solution. If such a solution is not provided as input, the
multilevel approach [11] is a very powerful technique. It consists of three phases:
First, one computes a hierarchy of graphs G0, . . . , Gl by recursive coarsening in
the first phase. Gl ought to be very small in size, but similar in structure to the
input graph G0. A very good initial solution for Gl is computed in the second
phase. After that, the solution is extrapolated to the next-finer graph recur-
sively. In this final phase each extrapolated solution is refined using the desired
local improvement algorithm. A very common local improvement algorithm for
the third phase of the multilevel process is based on the method by Fiduccia
and Mattheyses (FM) [9], a variant of the well-known local search heuristic by
Kernighan and Lin (KL) [17] with improved running time. The main idea of both
is to exchange nodes between parts in the order of the cost reductions possible,
while maintaining balanced partition sizes. After every node has been moved
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once, the solution with the best gain is chosen. This is repeated several times
until no further improvements are found.

State-of-the-art graph partitioning libraries such as METIS [15, 16] and Jos-
tle [36] use KL/FM for local improvement and edge-contractions based on
matchings for coarsening. Recently, Holtgrewe et al. [13] presented a parallel
library for static partitioning called KaPPa. It attains very good edge cut re-
sults, mainly by controlling the multilevel process using so-called edge ratings
for approximate matchings. Recently Sanders and Osipov [24] and Sanders and
Schulz [26] present new sequential approaches based on a radical multilevel strat-
egy and flow-based local improvement, respectively.

2.2 Load Balancing by Repartitioning

In order to consider both a small edge-cut and small migration costs when
repartitioning dynamic graphs, different strategies have been explored in the
literature. To overcome the limitations of simple scratch-remap and rebalance
approaches, Schloegel et al. [30, 31] combine both methods. They propose a mul-
tilevel algorithm with three main features. In the local improvement phase, two
algorithms are used. On the coarse hierarchy levels, a diffusive scheme takes care
of balancing the subdomain sizes. Since this might affect the partition quality
negatively, a refinement algorithm is employed on the finer levels. It aims at
edge-cut minimization by profitable swaps of boundary vertices.

To address the load balancing problem in parallel applications, distributed
versions of the partitioners METIS, Jostle, and Scotch [32, 37, 6] have been
developed. Also, the tools Parkway [34], a parallel hypergraph partitioner, and
Zoltan [5], a suite of load balancing algorithms with focus on hypergraph par-
titioning, need to be mentioned although they concentrate (mostly) on hyper-
graphs. An efficient parallelization of the KL/FM heuristic that these parallel
(hyper)graph partitioners use is complex due to inherently sequential parts in
this heuristic. For example, one needs to ensure that during the KL/FM im-
provement no two neighboring vertices change their partition simultaneously
and destroy data consistency. A coloring of the graph’s vertices is used by the
parallel libraries ParMETIS [30] and KaPPa [13] for this purpose.

2.3 Diffusive Methods for Shape Optimization

Some applications profit from good partition shapes. As an example, the conver-
gence rate of certain iterative linear solvers can depend on the geometric shape of
a partition [8]. That is why in previous work [20, 23] we have developed shape-
optimizing algorithms based on diffusion. Before that, repartitioning methods
employed diffusion mostly for computing how much load needs to be migrated
between subdomains [28], not which elements should be migrated. Generally
speaking, a diffusion problem consists of distributing load from some given seed
vertex (or vertices) into the whole graph by iterative load exchanges between
neighbor vertices. Typical diffusion schemes have the property to result in the
balanced load distribution, in which every node has the same amount of load.
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This is one reason why diffusion has been studied extensively for load balanc-
ing [38]. In order to distinguish dense from sparse graph regions, our algorithms
Bubble-FOS/C [23] and the much faster DibaP [22] (also see Section 3) as
well as a combination of KL/FM and diffusion by Pellegrini [25] exploit that
diffusion sends load entities faster into densely connected subgraphs.

3 Diffusion-based Repartitioning with DibaP

The algorithm DibaP, which we have developed and implemented with shared
memory parallelism previously [22], is a hybrid multilevel combination of the two
(re)partitioning methods Bubble-FOS/C and TruncCons, which are both
based on disturbed diffusion. We call a diffusion scheme disturbed if it is modified
such that its steady state does not result in the balanced distribution. Disturbed
diffusion schemes can be helpful to determine if two graph nodes or regions are
densely connected to each other, i. e., if they are connected by many paths of
small length. Before we explain the whole algorithm DibaP, we describe its two
main components for (re-)partitioning in more detail.

3.1 Bubble-FOS/C

In contrast to Lloyd’s related k-means algorithm [18], Bubble-FOS/C parti-
tions or clusters graphs instead of geometric inputs. Given a graph G = (V,E)
and k ≥ 2, initial partition representatives (centers) are chosen in the first
step of the algorithm, one center for each of the k parts. All remaining vertices
are assigned to their closest center vertex. While for k-means one usually uses
Euclidean distance, Bubble-FOS/C employs the disturbed diffusion scheme
FOS/C [23] as distance measure (or, more precisely, as similarity measure). The
similarity of a node v to a non-empty node subset S is computed by solving the
linear system Lw = d for w, where L is the Laplacian matrix of the graph and d
a suitably chosen vector that disturbs the underlying diffusion system. After the
assignment step, each part computes its new center for the next iteration – again
using FOS/C, but with a different right-hand side vector d. The two operations
assigning vertices to parts and computing new centers are repeated alternately a
fixed number of times or until a stable state is reached. Each operation requires
the solution of k linear systems, one for each partition.

It turns out that this iteration of two alternating operations yields very good
partitions. Apart from the distinction of dense and sparse regions, the final
partitions are very compact and have short boundaries. However, the repeated
solution of linear systems makes Bubble-FOS/C slow.

3.2 TruncCons

The algorithm TruncCons [22] (for truncated consolidations) is also an iter-
ative method for the diffusion-based local improvement of partitions, but it is

5



much faster than Bubble-FOS/C. Within each TruncCons iteration, the fol-
lowing is performed independently for each partition πc: First, the initial load
vector w(0) is set. Nodes of πc receive an equal amount of initial load |V |/|πc|,
while the other nodes’ initial load is set to 0. Then, this load is distributed
within the graph by performing a small number ψ of FOS (first order diffusion
scheme) [7] iterations. The final load vector w is computed as w = Mψw(0),
where M = I − αL denotes the diffusion matrix [7] of G. A common choice
for α is α := 1

(1+deg(G)) . The computation w = Mψw(0) could be realized by

ψ matrix-vector products. A more localized view of its realization is given by
iterative load exchanges on each vertex v with its.

After the load vectors have been computed this way independently for all k
parts, each node v is assigned to the partition it has obtained the highest load
from. This completes one TruncCons iteration, which can be repeated several
times (the total number is denoted by Λ subsequently) to facilitate sufficiently
large movements of the parts. A node with the same amount of load as all its
neighbors does not change its load in the next FOS iteration. Due to the choice of
initial loads, such an inactive node is a certain distance away from the partition
boundary. By avoiding load computations for inactive nodes, we can restrict the
computational effort to areas close to the partition boundaries.

3.3 The Hybrid Algorithm DibaP

Fig. 1. Sketch of the combined
multilevel hierarchy and the cor-
responding repartitioning algo-
rithms used within DibaP.

The main components of DibaP are de-
picted in Figure 1. To build a multilevel
hierarchy, the fine levels are coarsened (1)
by approximate maximum weight match-
ings. Once the graphs are sufficiently small,
the construction mechanism can be changed.
In our sequential implementation, we switch
the construction mechanism (2) to the more
expensive coarsening based on algebraic
multigrid (AMG) – for an overview on AMG
cf. [33]. This is advantageous regarding run-
ning time because, after computing an initial
partition (3), Bubble-FOS/C is used as
local improvement algorithm on the coarse
levels (4). Since Bubble-FOS/C uses AMG
as linear solver, such a hierarchy needs to be
built anyway. In our parallel implementation
PDibaP (cf. Section 4), however, due to ease
of programming, we decided to coarsen by
matchings, use a conjugate gradient solver,
and leave the use of AMG for future work.
Eventually, the partitions on the fine lev-
els are improved by the local improvement
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scheme TruncCons. DibaP includes additional components, e. g., for balanc-
ing partition sizes and smoothing partition boundaries, see Section 4.3.

The rationale behind DibaP can be explained as follows. While Bubble-
FOS/C computes high-quality graph partitions with good shapes, its similarity
measure FOS/C is very expensive to compute compared to established partition-
ing heuristics. To overcome this problem, we use the simpler process Trunc-
Cons, a truly local algorithm to improve partitions generated in a multilevel
process. It exploits the observation that, once a reasonably good solution has
been found, alterations during a local improvement step take place mostly at
the partition boundaries. The disturbing truncation within TruncCons allows
for a concentration of the computations around the partition boundaries, where
the changes in subdomain affiliation occur. Moreover, since TruncCons is also
based on disturbed diffusion, the good properties of the partitions generated by
Bubble-FOS/C are mostly preserved.

4 PDibaP: Parallel DibaP for Repartitioning

In this section we describe our parallel implementation of DibaP using MPI. In
particular we highlight some differences to the sequential (and thread-parallel)
version used for static partitioning [22].

4.1 Distributed Memory Parallelism

The foundation of our PDibaP implementation (data structure, linear algebra
routines, auxiliary functions) is to a large extent based on the code described in
more detail in our previous work [23] and in Schamberger’s thesis [27].

As graph data structure PDibaP employs the standard distributed com-
pressed sparse row (CSR) format with ghost (or halo) vertices. The linear sys-
tems within Bubble-FOS/C are solved with a conjugate gradient (CG) solver
using the traditional domain decomposition approach for distributed parallelism.
That means that each system is distributed over all processors and solved by
all of them in parallel at the same time, which requires three communication
operations per iteration within CG. The TruncCons process is executed in a
similar manner. To account for the inactive nodes, however, we do not perform
complete matrix-vector multiplications, but perform local load exchanges only
if an active vertex is involved. Both CG and TruncCons require a halo update
after each iteration. This communication routine is rather expensive, so that the
number of iterations should be kept small. The linear algebra routines within
PDibaP do not make use of external libraries. This is due to the fact that the
solution process in Bubble-FOS/C is very specialized [23, 27].

4.2 Repartitioning

So far, PDibaP is targeted at repartitioning dynamic graphs. The option for
parallel static partitioning is still in its infancy due to a limitation in the multi-
level process, which we explain later on in this section.
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When PDibaP is used for repartitioning instead of partitioning, one part of
its input is an initial partition. Based on this partition, the graph is distributed
onto the processors. We can assume that this partition is probably more unbal-
anced than advisable. It might also contain some undesirable artifacts. Never-
theless, its quality is not likely to be extremely bad. It is therefore reasonable
to improve the initial partition instead of starting from scratch. Moreover, a
refinement limits the number of migrated vertices as well, an important feature
of dynamic repartitioning methods.

In particular if the imbalance is higher than allowed, it is advisable to employ
the multilevel paradigm. Local improvements on the input graph would not result
in sufficiently large movements to a high quality solution. Therefore, a matching
hierarchy is constructed until only a few thousand nodes remain in the coarsest
graph. So far, only edges whose endpoints lie in the same part are considered
to be part of the matching. This simplifies the parallel implementation and is
a viable approach when repartitioning. For static partitioning, however, edges
in the cut between parts on different processors should be considered as well.
Otherwise, the multilevel hierarchy contains only a few levels after which no
more edges are found for the matching. The development and/or integration of
a more general matching is part of future work.

After constructing the hierarchy, the initial partition is projected downwards
the hierarchy onto the coarsest level. On the coarsest level the graph is reparti-
tioned with Bubble-FOS/C, starting with the projected initial solution. Going
up the multilevel hierarchy recursively, the result is then improved with either
Bubble-FOS/C or TruncCons, depending on the size of the level. After the
refinement, the current solution is extrapolated to the next level until the process
stops at the input level. Sometimes the matching algorithm has hardly coarsened
a level. This happens for example to avoid star-like subgraphs with strongly vary-
ing node degrees. Limited coarsening results in two very similar adjacent levels.
Local improvement with TruncCons on both of these levels would result in
similar solutions with an unnecessary running time investment. That is why in
such a case TruncCons is skipped on the finer level of the two.

4.3 Balancing Procedures

In general the diffusive processes employed by DibaP do not guarentee the
nearly perfect balance required by numerical simulations (say, for example, no
part should be larger than the average part size plus 3%). That is why we employ
two balancing procedures within PDibaP. The first one called ScaleBalance is
an iterative procedure that tries to determine for every part 1 ≤ p ≤ k a scalar
βp such that the assignment of vertices to parts based on the load vector entries
βpwp results in a balanced partition. More details can be found in Meyerhenke
et al. [23, p. 554]. While ScaleBalance works surprisingly well in many cases,
it also happens that it is not fully effective even after a fairly large number of
iterations. Then we employ a second approach, called FlowBalance, whose basic
idea is described in previous work as well [23, p. 554]. Here we highlight recent
changes necessary to adapt to the distributed parallelism in PDibaP.
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First, we solve a load balancing problem on the quotient graph of the partition
Π. The quotient graph Q contains a vertex for each part in Π and two vertices
are connected by an edge in Q if and only if their corresponding parts share
a common boundary in Π. The load balancing problem can be solved with
diffusion [14]. The solution yields the migrating flow that balances the partition.
Hence, we know how many vertices have to be moved from πi to πj , let us call
this number nij . It remains to be determined which vertices take this move.
For quality reasons, this decision should be based on the diffusion values in the
respective load vectors. That is why we want to migrate the nij vertices with
the highest values in the load vector wj .

In our sequential and thread-parallel version of DibaP, we use a binary heap
as priority queue to perform the necessary selection, migration, and resulting
updates to the partition. Since parallel priority queues require a considerable
effort to obtain good scalability, we opt for a different approach here. For ease of
implementation (and because the amount of computation and communication is
relatively small), each processor preselects its local vertices with the highest nij
load values in wj . These preselected load values are sent to processor pj , which
performs a sequential selection. The threshold value found this way is broadcast
back to all processors. Finally, all processors assign their vertices whose diffusion
loads in wj is higher than the threshold to part πj .

This approach might experience problems when the selected threshold value
occurs multiple times among the preselected candidate values. In such a case, the
next larger candidate value is chosen as threshold. Another problem could be the
scheduled order in which migration takes place. It could happen that a processor
needs to move a number of vertices that it is about to obtain by a later move. To
address this, we employ a conservative approach and move rather fewer vertices
than too many. As a compensation, the whole procedure is repeated iteratively
until a balanced partition is found.

5 Experiments

Here we present some of our experimental results comparing our PDibaP imple-
mentation to the KL/FM-based load balancers ParMETIS and parallel Jostle.

5.1 Benchmark Data

Our benchmark set comprises two types of graph sequences. The first one consists
of three smaller graph sequences with 51 frames each, having between approxi-
mately 1M and 3M vertices, respectively. The second group contains two larger
sequences of 36 frames each. Each frame in this group has approximately 4.5M
to 16M vertices. These sequences result in 50 and 35 repartitioning steps, respec-
tively. We choose to (re)partition the smaller sequences into k = 36 and k = 60
parts, while the larger ones are divided into k = 60 and k = 84 parts. These
values have been chosen as multiples of 12 because one of our test machines has
12 cores per node (the other one contains quad-core CPUs).
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All graphs of these five sequences have a two-dimensional geometry and have
been generated to resemble adaptive numerical simulations such as those occur-
ring in computational fluid dynamics. A visual impression of some of the data (in
smaller versions) is available in previous work [23, p. 562f.]. The graph of frame
i + 1 in a given sequence is obtained from the graph of frame i by changes re-
stricted to local areas. As an example, some areas are coarsened, whereas others
are refined. These changes are in most cases due to the movement of an object
in the simulation domain and often result in unbalanced subdomain sizes. For
more details the reader is referred to Marquardt and Schamberger [19], who have
provided the generator for the sequence data.1 Some of these frames are also part
of the archive of the 10th DIMACS Implementation Challenge [1].

5.2 Hardware and Software Settings

We have conducted our experiments on a cluster with 60 Fujitsu RX200S6 nodes
each having 2 Intel Xeon X5650 processors at 2.66 GHz (results in 12 compute
cores per node). Moreover, each node has 36 GB of main memory. The inter-
connect is InfiniBand HCA 4x SDR HCA PCI-e, the operating system Cent
OS 5.4. PDibaP is implemented in C/C++. PDibaP as well as ParMETIS
and parallel Jostle have been compiled with Intel C/C++ compiler 11.1 and
MVAPICH2 1.5.1 as MPI library.

The main parameters controlling the running time and quality of the DibaP
algorithm are the number of iterations in the (re)partitioning algorithms Bubble-
FOS/C and TruncCons. For our experiments we perform 3 iterations within
Bubble-FOS/C, with one AssignPartition and one ComputeCenters opera-
tion, respectively. The faster local approach TruncCons is used on all multilevel
hierarchy levels with graph sizes above 12,000 vertices. For TruncCons, the pa-
rameter settings Λ = 9 and ψ = 14 for the outer and inner iteration, respectively.
These settings provide a good trade-off between running time and quality. The
allowed imbalance is set to the default value 3% for all tools.

5.3 Results

In addition to the graph partitioning metrics edge-cut and communication vol-
ume (of the underlying application based on the computed partition), we are
here also interested in migration costs. These costs result from data changing
their processor after repartitioning. We count the number of nodes that change
their subdomain from one frame to the next as a measure of these costs. One
could also assign cost weights to the partitioning objectives and the migration
volume to evaluate the linear combination of both. Since these weights depend
both on the underlying application and the parallel architecture, we have not
pursued this here. We compare PDibaP to the state-of-the-art repartitioning
tools ParMETIS and parallel Jostle. Both competitors are mainly based on

1 Some of the input data can be downloaded from the website http://www.upb.de/

cs/henningm/graph.html.
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the node-exchanging KL heuristic for local improvement. The load balancing
toolkit Zoltan [5], whose integrated KL/FM partitioner is based on the hy-
pergraph concept, is not included in the detailed presentation. Our experiments
with it indicate that it is not as suitable for our benchmark set of FEM graphs,
in particular because it yields disconnected parts which propagate and worsen in
the course of the sequence. We conclude that currently the dedicated graph (as
opposed to hypergraph) partitioners seem more suitable for this problem type.

The partitioning quality is measured in our experiments by the edge cut (EC,
a summation norm) and the maximum communication volume (CVmax). CVmax

is the sum of the maximum incoming communication volume and the maximum
outgoing communication volume, taken over all parts, respectively. The values
are displayed in Table 1, averaged over the whole sequence and aggregated by
the different k. Very similar results are obtained for the geometric mean in nearly
all cases, which is why we do not show these data as well. The migration costs
are recorded in both norms and shown for each sequence (again aggregated) in
Table 2. Missing values for parallel Jostle (—) indicate program crashes on the
corresponding instance(s).

Table 1. Average edge cut and communication volume (max norm) for repartitionings
computed by ParMETIS, Jostle, and DibaP. Lower values are better, best values
per instance are written in bold.

Sequence ParMETIS Par. Jostle PDibaP

EC CVmax EC CVmax EC CVmax

biggerslowtric 11873.5 1486.7 9875.1 1131.9 8985.5 981.8

biggerbubbles 16956.8 2205.3 14113.2 1638.7 12768.3 1443.5

biggertrace 17795.6 2391.1 14121.3 1687.0 12229.2 1367.5

hugetric 34168.5 2903.0 28208.3 2117.6 24974.4 1766.2

hugetrace 54045.8 5239.7 – – 34147.4 2459.4

The aggregated graph partitioning metrics show that DibaP is able to com-
pute the best partitions consistently. DibaP’s advance is highest for the com-
munication volume. With about 12–19% on parallel Jostle and about 34–53%
on ParMETIS these improvements are clearly higher than the approximately
7% obtained for static partitioning [22], which is due to the fact that parallel
KL (re)partitioners often compute worse solutions than their serial counterparts
for static partitioning.

The results for the migration volume are not consistent. All tools have a
similar amount of best values. The fact that ParMETIS is competetitive is
slightly surprising when compared to previous results [21], where it compared
worse. Also unexpected, PDibaP shows shows significantly higher migration
costs for the instance biggerbubbles. Figure 2 displays the migration volumes for
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Table 2. Average migration volume in the `1- and `∞-norm for repartitionings com-
puted by ParMETIS, Jostle, and DibaP. Lower values are better, best values per
instance are written in bold.

Sequence ParMETIS Par. Jostle PDibaP

`∞ `1 `∞ `1 `∞ `1

biggerslowtric 60314.3 606419.1 64252.2 557608.7 65376.1 550427.0

biggerbubbles 77420.0 1249424.3 68865.1 791723.6 93767.5 1328116.1

biggertrace 54131.2 733750.4 49997.8 533809.2 46620.4 613071.2

hugetric 231072.8 2877441.8 244082.5 2932607.6 232382.6 2875302.5

hugetrace 175795.8 3235984.1 – – 189085.3 3308461.4

each frame within the slowrot sequence in the `∞-norm. One gets an impression
of the different strategies employed by the three programs. While DibaP has a
more constant migration volume, the values for parallel Jostle and ParMETIS
show a higher amplitude. It depends on the instance which strategy pays off.

These results lead to the conclusion that DibaP’s implicit optimization with
the iterative algorithms Bubble-FOS/C and TruncCons focusses more on
good partitions than on small migration costs. In some cases the latter objective
should receive more attention. As currently no explicit mechanisms for migration
optimization are integrated, such mechanisms could be implemented if one finds
in other experiments that the migration costs become too high with DibaP.

It is interesting to note that further experiments indicate a multilevel ap-
proach to be indeed necessary in order to produce sufficiently large partition
movements that keep up with the movements of the simulation. Partitions gen-
erated by multilevel DibaP are of a noticeably higher quality regarding the
graph partitioning metrics than those computed by TruncCons without mul-
tilevel approach. Also, using a multilevel hierarchy results in steadier migration
costs, which rarely deviate much from the mean.

The running time of the tools for the dynamic graph instances used in this
study can be characterized as follows. ParMETIS is the fastest, taking from
a fraction of a second up to a few seconds for each frame. Parallel Jostle is
approximately a factor of 2-3 slower than ParMETIS. PDibaP, however, is
significantly slower than both tools, with an average slowdown of about 25-50
compared to ParMETIS. It requires from a few seconds up to a few minutes
for each frame.

We would like to stress that a high repartitioning quality is often very impor-
tant. Usually, the most time consuming parts of numerical simulations are the
numerical solvers. Hence, a reduced communication volume provided by an ex-
cellent partitioning can pay off unless the repartitioning time is extremely high.
Nevertheless, a further acceleration of shape-optimizing load balaincing is of ut-
most importance. Minutes for each repartitioning step seem to be problematic
for some targeted applications.
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Fig. 2. Number of migrating nodes (`∞-norm) in each frame of the biggertrace sequence
for PDibaP (black circle), METIS (blue triangle), and Jostle (red square). Lower
values are better.

6 Conclusions

With this work we have demonstrated that the shape-optimizing repartitioning
algorithm DibaP based on disturbed diffusion can be a good alternative to tra-
ditional KL-based methods for balancing the load in parallel adaptive numerical
simulations. In particular, the parallel implementation PDibaP is very suitable
for simulations of small to medium scale, i. e., when the number of vertices and
edges in the dynamic graphs are on the order of several millions. While PDibaP
is still significantly slower than the state-of-the-art, it usually computes consid-
erably better solutions w. r. t. edge cut and communication volume. In situations
where the quality of the load balancing phase is more important than its running
time – e. g., when the computation time between the load balancing phases is
relatively high – the use of PDibaP is expected to pay off.

As part of future work, we aim at an improved multilevel process and faster
partitioning methods. It would also be worthwhile to investigate if Bubble-
FOS/C and TruncCons can be further adapted algorithmically, for example
to reduce the dependence on k in the running time.
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